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Abstract

In this paper, we propose a discriminative video rep-
resentation for event detection over a large scale video
dataset when only limited hardware resources are avail-
able. The focus of this paper is to effectively leverage deep
Convolutional Neural Networks (CNNs) to advance event
detection, where only frame level static descriptors can be
extracted by the existing CNN toolkits. This paper makes
two contributions to the inference of CNN video representa-
tion. First, while average pooling and max pooling have
long been the standard approaches to aggregating frame
level static features, we show that performance can be sig-
nificantly improved by taking advantage of an appropriate
encoding method. Second, we propose using a set of latent
concept descriptors as the frame descriptor, which enriches
visual information while keeping it computationally afford-
able. The integration of the two contributions results in
a new state-of-the-art performance in event detection over
the largest video datasets. Compared to improved Dense
Trajectories, which has been recognized as the best video
representation for event detection, our new representation
improves the Mean Average Precision (mAP) from 27.6%
to 36.8% for the TRECVID MEDTest 14 dataset and from
34.0% to 44.6% for the TRECVID MEDTest 13 dataset.

1. Introduction and Related Work
Complex event detection [1, 2], which targets the detec-

tion of such events as “renovating a home” in a large video
collection crawled from Youtube, has recently attracted a lot
of research attention in computer vision. Compared to con-
cept analysis in videos, e.g., action recognition, event de-
tection is more difficult primarily because an event is more
complex and thus has greater intra-class variations. For ex-
ample, a “marriage proposal” event may take place indoors
or outdoors, and may consist of multiple concepts such as
ring (object), kneeling down (action) and kissing (action).

Recent research efforts have shown that combining mul-
tiple features, including static appearance features [9, 25,
41], motion features [23, 7, 43, 44, 33] and acoustic fea-

tures [28], yields good performance in event detection, as
evidenced by the reports of the top ranked teams in the
TRECVID Multimedia Event Detection (MED) competi-
tion [3, 22, 29, 30] and research papers [26, 31, 40, 45]
that have tackled this problem. By utilizing additional data
to assist complex event detection, researchers propose the
use of “video attributes” derived from other sources to fa-
cilitate event detection [27], or to utilize related exemplars
when the training exemplars are very few [46]. As we focus
on improving video representation in this paper, this new
method can be readily fed into those frameworks to further
improve their performance.

Dense Trajectories and its enhanced version improved
Dense Trajectories (IDT) [44] have dominated complex
event detection in recent years due to their superior per-
formance over other features such as the motion feature
STIP [23] and the static appearance feature Dense SIFT [3].
Despite good performance, heavy computation costs greatly
restrict the usage of the improved Dense Trajectories on a
large scale. In the TRECVID MED competition 2014 [2],
the National Institute of Standards and Technology (NIST)
introduced a very large video collection, containing 200,000
videos of 8,000 hours in duration. Paralleling 1,000 cores,
it takes about one week to extract the improved Dense Tra-
jectories for the 200,000 videos in the TRECVID MEDE-
val 14 collection. Even after the spatial re-sizing and tem-
poral down-sampling processing, it still takes 500 cores one
week to extract the features [3]. As a result of the unaf-
fordable computation cost, it would be extremely difficult
for a relatively smaller research group with limited com-
putational resources to process large scale MED datasets.
It becomes important to propose an efficient representation
for complex event detection with only affordable computa-
tional resources, e.g., a single machine, while at the same
time attempting to achieve better performance.

One instinctive idea would be to utilize the deep learn-
ing approach, especially Convolutional Neural Networks
(CNNs), given their overwhelming accuracy in image anal-
ysis and fast processing speed, which is achieved by lever-
aging the massive parallel processing power of GPUs [21].
However, it has been reported that the event detection
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MEDTest 13 MEDTest 14
IDT [44, 3] 34.0 27.6

CNN in Lan et al. [22] 29.0 N.A.
CNNavg 32.7 24.8

Table 1. Performance comparison (mean Average Precision in per-
centage). Lan et al. [22] is the only attempt to apply CNN features
in TRECVID MED 2013. CNNavg are our results from the average
pooling representation of frame level CNN descriptors.

performance of CNN based video representation is worse
than the improved Dense Trajectories in TRECVID MED
2013 [22, 3], as shown in Table 1. A few technical prob-
lems remain unsolved.

Firstly, CNN requires a large amount of labeled video
data to train good models from scratch. The large
scale TRECVID MED datasets (i.e., MEDTest 13 [1] and
MEDTest 14 [2]) only have 100 positive examples per
event, with many null videos which are irrelevant. The num-
ber of labeled videos is smaller than that of the video col-
lection for sports videos [20]. In addition, as indicated in
[46], event videos are quite different from action videos, so
it makes little sense to use the action dataset to train models
for event detection.

Secondly, when dealing with a domain specific task with
a small number of training data, fine-tuning [12] is an effec-
tive technique for adapting the ImageNet pre-trained mod-
els for new tasks. However, the video level event labels are
rather coarse at the frame level, i.e., not all frames necessar-
ily contain the semantic information of the event. If we use
the coarse video level label for each frame, performance is
barely improved by frame level fine-tuning; this was veri-
fied by our preliminary experiment1.

Lastly, given the frame level CNN descriptors, we need
to generate a discriminative video level representation. Av-
erage pooling is the standard approach [32, 3] for static
local features, as well as for the CNN descriptors [22].
Table 1 shows the performance comparisons of the im-
proved Dense Trajectories and CNN average pooling rep-
resentation. We provide the performance of Lan et al. [22]
for reference as well. We can see that the performance
of CNN average pooling representation cannot get better
than the hand-crafted feature improved Dense Trajectories,
which is fairly different from the observations in other vi-
sion tasks [12, 6, 13].

The contributions of this paper are threefold. First, this
is the first work to leverage the encoding techniques to gen-
erate video representation based on CNN descriptors. Sec-
ond, we propose to use a set of latent concept descriptors as
frame descriptors, which further diversifies the output with
aggregation on multiple spatial locations at deeper stage of

1However, with certain modification of the CNN structure, e.g. cross-
frame max-pooling [11], fine-tuning could be helpful.

the network. The approach forwards video frames for only
one round along the deep CNNs for descriptor extraction.
With these two contributions, the proposed video CNN rep-
resentation achieves more than 30% relative improvement
over the state-of-the-art video representation on the large
scale MED dataset, and this can be conducted on a single
machine in two days with 4 GPU cards installed. In addi-
tion, we propose to use Product Quantization [15] based on
CNN video representation to speed up the execution (event
search) time. According to our extensive experiments, we
show that the approach significantly reduces the I/O cost,
thereby making event prediction much faster while retain-
ing almost the same level of precision.

2. Preliminaries
Unless otherwise specified, this work is based on the net-

work architecture released by [37], i.e., the configuration
with 16 weight layers in the VGG ILSVRC 2014 classifi-
cation task winning solutions. The first 13 weight layers
are convolutional layers, five of which are followed by a
max-pooling layer. The last three weight layers are fully-
connected layers. In the rest of this paper, we follow the
notations in [6, 12]: pool5 refers to the activation of the last
pooling layer, fc6 and fc7 refer to the activation of the first
and second fully-connected layers, respectively. Though the
structure in [37] is much deeper than the classic CNN struc-
ture in [21, 6, 12], the subscripts of pool5, fc6 and fc7 no-
tations still correspond if we regard the convolution layers
between the max-pooling layers as a “compositional convo-
lutional layer” [37]. We utilize the activations before Rec-
tified Linear Units (i.e., fc6 and fc7) and after them (i.e.,
fc6 relu and fc7 relu), since we observe significant differ-
ences in performance between these two variants.

3. Video CNN Representation
We begin by extracting the frame level CNN descriptors

using the Caffe toolkit [18] with the model shared by [37].
We then need to generate video level vector representations
on top of the frame level CNN descriptors.

3.1. Average Pooling on CNN Descriptors

As described in state-of-the-art complex event detection
systems [3, 32], the standard way to achieve image-based
video representation in which local descriptor extraction
relies on individual frames alone, is as follows: (1) Ob-
tain the descriptors for individual frames; (2) Apply nor-
malization on frame descriptors; (3) Average pooling on
frame descriptors to obtain the video representation, i.e.,
xvideo = 1

N

∑N
i=1 xi, xi is the frame-level descriptor and

N is the total number of frames extracted from the video;
(4) Re-normalization on video representation.

Max pooling on frames to generate video representation



is an alternative method but it is not typical in event detec-
tion. We observe similar performance with average pooling,
so we omit this method.

3.2. Video Pooling on CNN descriptors

Video pooling computes video representation over the
whole video by pooling all the descriptors from all the
frames in a video. The Fisher vector [35, 36] and Vector
of Locally Aggregated Descriptors (VLAD) [16, 17] have
been shown to have great advantages over Bag-of-Words
(BoWs) [38] in local descriptor encoding methods. The
Fisher vector and VLAD have been proposed for image
classification and image retrieval to encode image local de-
scriptors such as dense SIFT and Histogram of Oriented
Gradients (HOG). Attempts have also been made to apply
Fisher vector and VLAD on local motion descriptors such
as Histogram of Optical Flow (HOF) and Motion Bound-
ary Histogram (MBH) to capture the motion information in
videos. To our knowledge, this is the first work on the video
pooling of CNN descriptors and we broaden the encoding
methods from local descriptors to CNN descriptors in video
analysis.

3.2.1 Fisher Vector Encoding

In Fisher vector encoding [35, 36], a Gaussian Mixture
Model (GMM) with K components can be denoted as
Θ = {(µk,Σk, πk), k = 1, 2, . . . ,K}, where µk,Σk, πk
are the mean, variance and prior parameters of k-th compo-
nent learned from the training CNN descriptors in the frame
level, respectively. Given X = (x1, . . . ,xN ) of CNN de-
scriptors extracted from a video, we have mean and covari-
ance deviation vectors for the k-th component as:

uk =
1

N
√
πk

N∑
i=1

qki

(
xi − µk

σk

)

vk =
1

N
√

2πk

N∑
i=1

qki

[(
xi − µk

σk

)2

− 1

]
, (1)

where qki is the posterior probability. By concatenation of
the uk and vk of all the K components, we form the Fisher
vector for the video with size 2D′K, whereD′ is the dimen-
sion of CNN descriptor xi after PCA pre-processing. PCA
pre-processing is necessary for a better fit on the diagonal
covariance matrix assumption [36]. Power normalization,
often Signed Square Root (SSR) with z = sign(z)

√
|z|,

and `2 normalization are then applied to the Fisher vec-
tors [35, 36].

3.2.2 VLAD Encoding

VLAD encoding [16, 17] can be regarded as a simplified
version of Fisher vector encoding. With K coarse centers
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Figure 1. Probability distribution of the cosine similarity between
positive-positive (blue and plain) and positive-negative (red and
dashed) videos using fc7 features, for average pooling (top), en-
coding with the Fisher vector using 256-component GMM (mid-
dle), and encoding with VLAD using 256 centers (bottom). As the
range of probability of Fisher vectors is very different from aver-
age pooling and VLAD, we only use consistent axes for average
pooling and VLAD. This figure is best viewed in color.

{c1, c2, . . . , cK} generated by K-means, we can obtain the
difference vector regarding center ck by:

uk =
∑

i:NN(xi)=ck

(xi − ck), (2)

where NN(xi) indicates xi’s nearest neighbors among K
coarse centers.

The VLAD encoding vector with size D′K is obtained
by concatenating uk over all the K centers. Another vari-
ant of VLAD called VLAD-k, which extends the nearest
centers with the k-nearest centers, has shown good per-
formance in action recognition [19, 34]. Without specifi-
cation, we utilize VLAD-k with k = 5 by default. Ex-
cept for the power and `2 normalization, we apply intra-
normalization [4] to VLAD.

3.2.3 Quantitative Analysis

Given the above three approaches, we need to find out
which one is the most appropriate for the CNN descrip-
tors. To this end, we conduct an analytic experiment on
the MEDTest 14 training set [2] to study the discriminative
ability of three types of video representations, i.e., average
pooling, video pooling with Fisher vector, and video pool-
ing with VLAD on the CNN descriptors. Specifically, we
calculate the cosine similarity within the positive exemplars
among all the events (denoted as pos-pos), and the cosine
similarity between positive exemplars and negative exem-
plars (denoted as pos-neg). The results are shown in Fig-



Figure 2. Illustration of the latent concept descriptors encoding procedure. We adopt M filters in the last convolutional layer as M latent
concept classifiers. Before the last convolutional layer, M filters (e.g., a cuboid of size 3 × 3 × 512) produce the prediction outputs at
every convolution location, followed by the max-pooling operations. Then, we get the responses of windows of different sizes and strides
(in this example the output size is 2 × 2) for each latent concept. Color strength corresponds to the strength of response of each filter.
Finally, we accumulate the responses for the M filters at the same location into the latent concept descriptors. Each dimension corresponds
to one latent concept. After obtaining all latent concept descriptors of all frames, we then apply encoding methods to get the final video
representation. This figure is best viewed in color.

ure 1. With a good representation, the data points of posi-
tive and negative exemplars should be far away from each
other, i.e., the cosine similarity of “pos-neg” should be close
to zero. In addition, there should be a clear difference be-
tween the distributions of “pos-pos” and “pos-neg”.

Average pooling: In Figure 1, we observe that the “pos-
neg” cosine similarity distribution is far from zero, which
is highly indicative that a large portion of the positive and
negative exemplar pairs are similar to each other. In addi-
tion, the intersection of areas under the two lines span over
a large range of [0.2, 0.8]. Both observations imply that av-
erage pooling may not be the best choice.

Fisher vector: Although the “pos-neg” similarity dis-
tribution is fairly close to zero, a large proportion of the
“pos-pos” pairs also fall into the same range. No obvious
difference between the distributions of “pos-pos” and “pos-
neg” can be observed.

VLAD: The distribution of the “pos-neg” pairs is much
closer to zero than average pooling while a relatively small
proportion of the “pos-pos” similarity is close to the peak
of the “pos-neg” similarity.

From the above analytic study, we can see that VLAD
is the most fit for the CNN descriptors because the VLAD
representation has the best discriminative ability, which is
also consistent with the experimental results in Section 5.1.

3.3. CNN Latent Concept Descriptors

Compared to the fully-connected layers, pool5 contains
spatial information. However, if we follow the standard way
and flatten pool5 into a vector, the feature dimension will
be very high, which will induce heavy computational cost.

Specifically, the features dimension of pool5 is a× a×M ,
where a is the size of filtered images of the last pooling
layer and M is the number of convolutional filters in the
last convolutional layer (in our case, a = 7 and M = 512).
In the VGG network [37], pool5 features are vectors of
25,088-D while the fc6 and fc7 features have only 4096-
D. As a result, researchers tend to ignore the general fea-
tures extracted from pool5 [6, 13]. The problem is even
more severe in the video pooling scheme because the frame
descriptors with high dimensions would lead to instability
problems [10].

Note that the convolutional filters can be regarded as
generalized linear classifiers on the underlying data patches,
and each convolutional filter corresponds to a latent con-
cept [24]. We propose to formulate the general features
from pool5 as the vectors of latent concept descriptors, in
which each dimension of the latent concept descriptors rep-
resents the response of the specific latent concept. Each fil-
ter in the last convolutional layer is independent from other
filters. The response of the filter is the prediction of the
linear classifier on the convolutional location for the cor-
responding latent concept. In that way, pool5 layer of size
a×a×M can be converted into a2 latent concept descriptors
with M dimensions. Each latent concept descriptor repre-
sents the responses from the M filters for a specific pool-
ing location. Once we obtain the latent concept descriptors
for all the frames in a video, we then apply an encoding
method to generate the video representation. In this case,
each frame contains a2 descriptors instead of one descrip-
tor for the frame, as illustrated in Figure 2.

In [14], He et al. claim that the aggregation at a deeper



layer is more compatible with the hierarchical information
processing in our brains than cropping or wrapping the
original inputs, and they propose to use a Spatial Pyramid
Pooling (SPP) layer for object classification and detection,
which not only achieves better performance but also relaxes
the constraint that the input must be fixed-size. Different
from [14], we do not train the network with the SPP layer
from scratch, because it takes much longer time, especially
for a very deep neural network. Instead, at the last pooling
layer, we adopt multiple windows with different sizes and
strides without retraining the CNNs. In that way, visual in-
formation is enriched while only marginal computation cost
is added, as we forward frames through the networks only
once to extract the latent concept descriptors.

After extracting the CNN latent concept descriptors for
all spatial locations of each frame in a video, we then ap-
ply video pooling to all the latent concept descriptors of
that video. As in [14], we apply four different CNN max-
pooling operations and obtain (6× 6), (3× 3), (2× 2) and
(1 × 1) outputs for each independent convolutional filter, a
total of 50 spatial locations for a single frame. The dimen-
sion of latent concept descriptors (512-D) is shorter than
the descriptors from the fully-connected layers (4,096-D),
while the visual information is enriched via multiple spatial
locations on the filtered images.

3.4. Representation Compression

For the engineering aspect of a fast event search [2] on
a large video collection, we can utilize techniques such as
Product Quantization (PQ) [15] to compress the Fisher vec-
tor or VLAD representation. With PQ compression, the
storage space in disk and memory can be reduced by more
than an order of magnitude, while the performance remains
almost the same. The basic idea of PQ is to decompose
the representation into sub-vectors with equal lengthB, and
then within each sub-vector, K-means is applied to generate
2m centers as representative points. All the sub-vectors are
approximated by the nearest center and encoded into the in-
dex of the nearest center. In this way,B float numbers in the
original representation become m bit code; thus, the com-
pression ratio is B×32

m . For example, if we take m = 8 and
B = 4, we can achieve 16 times reduction in storage space.

Targeting at prediction on compressed data instead of on
the original features, we can decompose the learned linear
classifier w with an equal length B. With look-up tables to
store the dot-product between sub-vectors of 2m centers and
the corresponding sub-vector of w, the prediction speed on
large-amount of videos can be accelerated by D

B times look-
up operations and D

B − 1 times addition operations for each
video assuming D is the feature dimension [36] .

4. Experiment Settings
4.1. Datasets

In our experiments, we utilize the largest event detection
datasets with labels2, namely TRECVID MEDTest 13 [1]
and TRECVID MEDTest 14 [2]. They have been intro-
duced by NIST for all participants in the TRECVID com-
petition and research community to conduct experiments
on. For both datasets, there are 20 complex events respec-
tively, but with 10 events overlapping. MEDTest 13 con-
tains events E006-E015 and E021-E030, while MEDTest 14
has events E021-E040. Event names include “Birthday
party”, “Bike trick”, etc. Refer to [1, 2] for the complete
list of event names. In the training section, there are ap-
proximately 100 positive exemplars per event, and all events
share negative exemplars with about 5,000 videos. The test-
ing section has approximately 23,000 search videos. The
total duration of videos in each collection is about 1,240
hours.

4.2. Features for Comparisons

As reported in [3] and compared with the features from
other top performers [30, 29, 22] in the TRECVID MED
2013 competition, we can see that the improved Dense Tra-
jectories has superb advantages over the original Dense Tra-
jectories (used by all other teams except [3]), and is even
better than approaches that combine many low-level visual
features [30, 29, 22]. Improved Dense Trajectories extracts
local descriptors such as trajectory, HOG, HOF, and MBH,
and Fisher vector is then applied to encode the local de-
scriptors into video representation. Following [44, 3], we
first reduce the dimension of each descriptor by a factor of
2 and then utilize 256 components to generate the Fisher
vectors. We evaluate four types of descriptor in improved
Dense Trajectories, and report the results of the best combi-
nation of descriptors and the two individual descriptors that
have the best performance (HOG and MBH).

In addition, we report the results of some popular fea-
tures used in the TRECVID competition for reference, such
as STIP [23], MoSIFT [7] and CSIFT [41], though their per-
formance is far weaker than improved Dense Trajectories.

4.3. Evaluation Details

In all the experiments, we apply linear Support Vector
Machine (SVM) with LIBSVM toolkit [5]. We conduct ex-
tensive experiments on two standard training conditions: in
100Ex, 100 positive exemplars are given in each event and
in 10Ex, 10 positive exemplars are given. In the 100Ex con-
dition, we utilize 5-fold cross-validation to choose the pa-
rameter of regularization coefficientC in linear SVM. In the
10Ex condition, we follow [22] and set C in linear SVM to
1.

2Labels for MEDEval 13 and MEDEval 14 are not publicly available.



We sample every five frames in the videos and follow the
pre-processing of [21, 6] on CNN descriptor extraction. We
extract the features from the center crop only. CNN descrip-
tors are extracted using Caffe [18] with the best publicly
available model [37], and we utilize vlfeat [42] to generate
Fisher vector and VLAD representation.

Mean Average Precision (mAP) for binary classification
is applied to evaluate the performance of event detection
according to the NIST standard [1, 2].

5. Experiment Results
5.1. Results for Video Pooling of CNN descriptors

In this section, we show the experiments on video pool-
ing of fc6, fc6 relu, fc7 and fc7 relu. Before aggregation, we
first apply PCA with whitening on the `2 normalized CNN
descriptors. Unlike local descriptors such as HOG, MBH,
which have dimensions less than 200-D, the CNN descrip-
tors have much higher dimensions (4,096-D). We conduct
experiments with different reduced dimensions, i.e., 128,
256, 512 and 1,024, and utilize the reduced dimensions that
best balance performance and storage cost in corresponding
features, i.e., 512-D for fc6 and fc6 relu and 256-D for fc7
and fc7 relu. We utilize 256 components for Fisher vectors
and 256 centers for VLAD as common choices in [36, 16].
We will study the impact of parameters in Section 5.3. PCA
projections, components in GMM for Fisher vectors, and
centers in K-means for VLAD are learned from approxi-
mately 256,000 sampled frames in the training set.

Since we observe similar patterns in MEDTest 13
and MEDTest 14 under both 100Ex and 10Ex, we take
MEDTest 14 100Ex as an example to compare with differ-
ent representations, namely average pooling, video pooling
with Fisher vectors and video pooling with VLAD. From
Table 2, we can see that both video pooling with Fisher
vectors and VLAD demonstrate great advantages over the
average pooling representation. On the video pooling of
CNN descriptors, Fisher vector encoding does not exhibit
better performance than VLAD. Similar observations have
been expressed in [10]. We suspect that the distribution of
CNN descriptors is quite different from the local descrip-
tors, e.g., HOG, HOF. We will study the theoretical reasons
for the poorer performance of Fisher vector than VLAD on
CNN video pooling in future research.

fc6 fc6 relu fc7 fc7 relu
Average pooling 19.8 24.8 18.8 23.8

Fisher vector 28.3 28.4 27.4 29.1
VLAD 33.1 32.6 33.2 31.5

Table 2. Performance comparison (mAP in percentage) on
MEDTest 14 100Ex

We compare the performance of VLAD encoded CNN
descriptors with state-of-the-art feature improved Dense
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Figure 3. Performance comparisons on MEDTest 13 and
MEDTest 14, both 100Ex and 10Ex. This figure is best viewed
in color.

Trajectories (IDT) and average pooling on CNN descrip-
tors in Figure 3. We also illustrate the performance of
the two strongest descriptors inside IDT (HOG and MBH).
We can see very clearly that VLAD encoded CNN fea-
tures significantly outperform IDT and average pooling
on CNN descriptors over all settings. For more refer-
ences, we provide the performance of a number of widely
used features [29, 30, 22] on MEDTest 14 for compari-
son. MoSIFT [7] with Fisher vector achieves mAP 18.1%
on 100Ex and 5.3% on 10Ex; STIP [23] with Fisher vec-
tor achieves mAP 15.0% on 100Ex and 7.1% on 10Ex;
CSIFT [41] with Fisher vector achieves mAP 14.7% on
100Ex and 5.3% on 10Ex. Note that with VLAD encoded
CNN descriptors, we can achieve better performance with
10Ex than the relatively poorer features such as MoSIFT,
STIP, and CSIFT with 100Ex!

5.2. Results for CNN Latent Concept Descriptors
with Spatial Pyramid Pooling

We evaluate the performance of latent concept descrip-
tors (LCD) of both the original CNN structure and the struc-
ture with the Spatial Pyramid Pooling (SPP) layer plugged
in to validate the effectiveness of SPP. Before encoding the
latent concept descriptors, we first apply PCA with whiten-
ing. Dimension reduction is conducted from 512-D to a
range of dimensions such as 32-D, 64-D, 128-D, and 256-
D, and we find that 256-D is the best choice. We observe
a similar pattern with video pooling of fc layers indicating
that Fisher vector is inferior to VLAD on video pooling. We
omit the results for Fisher vector due to limited space.

We show the performance of our proposed latent con-
cept descriptors (LCD) in Table 3 and Table 4. In both
100Ex and 10Ex over two datasets, we can see clear gaps



100Ex 10Ex
Average pooling 31.2 18.8

LCDVLAD 38.2 25.0
LCDVLAD + SPP 40.3 25.6

Table 3. Performance comparisons for pool5 on MEDTest 13.
LCDVLAD is VLAD encoded LCD from the original CNN struc-
ture, while LCDVLAD + SPP indicates VLAD encoded LCD with
SPP layer plugged in.

100Ex 10Ex
Average pooling 24.6 15.3

LCDVLAD 33.9 22.8
LCDVLAD + SPP 35.7 23.2

Table 4. Performance comparisons for pool5 on MEDTest 14. No-
tations are the same as Table 3.

over the pool5 features with average pooling, which demon-
strates the advantages of our proposed novel utilization of
pool5. With SPP layer, VLAD encoded LCD (LCDVLAD +
SPP) continues to increase the performance further from the
original structure (LCDVLAD). The aggregation at a deeper
stage to generate multiple levels of spatial information via
multiple CNN max-pooling demonstrates advantages over
the original CNN structure while having only minimal com-
putation costs. The SPP layer enables a single pass of the
forwarding in the network compared to the multiple passes
of applying spatial pyramid on the original input images.

5.3. Analysis of the Impact of Parameters

We take VLAD encoded fc7 features under MEDTest 14
100Ex as an example to see the impact of parameters in the
video pooling process.

Dimensions of PCA: The original dimension of fc7 is
quite high compared to local descriptors. It is essential to
investigate the impact of dimensions in PCA in the pre-
processing stage, since it is critical to achieve a better trade-
off of performance and storage costs. Table 5 shows that in
dimensions of more than 256-D, performance remains sim-
ilar, whereas encoding in 128-D damages the performance
significantly.

Dimension 128-D 256-D 512-D 1024-D
mAP 30.6 33.2 33.1 33.2

Table 5. Impact of dimensions of CNN descriptors after PCA, with
fixed K = 256 in VLAD.

Number of Centers in Encoding: We explore various
numbers of centers K in VLAD, and the results are shown
in Table 6. With the increase of K, we can see that the
discriminative ability of the generated features improves.
However when K = 512, the generated vector may be too
sparse, which is somewhat detrimental to performance.

VLAD-k: We experiment with the traditional VLAD as
well, with nearest center only instead of k-nearest centers.

K 32 64 128 256 512
mAP 28.7 29.7 30.4 33.2 32.1

Table 6. Impact on numbers of centers (K) in VLAD, with fixed
PCA dimension of 256-D.

mAP drops from 33.2% to 32.0%.
Power Normalization: We remove the SSR post-

processing and test the features on the VLAD encoded fc7.
mAP drops from 33.2% to 27.0%, from which we can see
the significant effect of SSR post-processing.

Intra-normalization: We turn off the intra-
normalization. mAP drops from 33.2% to 30.6%.

5.4. Results for Product Quantization Compression

original B = 4 B = 8
mAP 33.2 33.5 (↑ 0.3) 33.0 (↓ 0.2)

space reduction - 16× 32×
Table 7. Performance change analysis for VLAD encoded fc7 with
PQ compression. B is the length of the sub-vectors in PQ and
m = 8.

We conduct experiments on VLAD encoded fc7 to see
the performance changes with Product Quantization (PQ)
compression. From the results in Table 7, we can see that
PQ with B = 4 maintains the performance and even im-
proves slightly. When B = 8, performance drops slightly.
If we compress with B = 4 , we can store VLAD encoded
fc7 features in 3.1 GB for the MEDEval 14, which contains
200,000 videos of 8,000 hours’ duration. With further com-
pression with a lossless technique such as Blosc3[8], we can
store the features of the whole collection in less than 1 GB,
which can be read by a normal SSD disk in a few seconds.
Without PQ compression, the storage size of the features
would be 48.8 GB, which severely compromises the exe-
cution time due to the I/O cost. Utilization of compression
techniques largely saves the I/O cost in the prediction pro-
cedure, while preserving the performance.

In our speed test on the MEDEval 14 collection using the
compressed data but not the original features, we can finish
the prediction on 200,000 videos in 4.1 seconds per event
using 20 threads on an Intel Xeon E5-2690v2 @ 3.00 GHz.

5.5. Results for Fusing Multiple Layers Extracted
from the Same Model

We investigate average late fusion [39] to fuse the pre-
diction results from different layers with PQ compression,
i.e., VLAD encoded LCD with SPP, fc6 and fc7. From
Table 8 we can see that the simple fusion pushes the per-
formance further beyond the single layers on MEDTest
13 and MEDTest 14, and achieves significant advantages
over improved Dense Trajectories (IDT). Our proposed

3Blosc can reduce the storage space by a factor of 4
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Figure 4. MEDTest 13 100Ex per event performance comparison
(in mAP percentage). This figure is best viewed in color.

method pushes the state-of-the-art performance much fur-
ther, achieves more than 30% relative improvement on
100Ex, and more than 65% relative improvement on 10Ex
over both challenging datasets.

Ours IDT Relative Improv
MED13 100Ex 44.6 34.0 31.2%
MED13 10Ex 29.8 18.0 65.6%
MED14 100Ex 36.8 27.6 33.3%
MED14 10Ex 24.5 13.9 76.3%

Table 8. Performance comparison of all settings; the last column
shows the relative improvement of our proposed representation
over IDT.

Figure 4 and Figure 5 show the per-event mAP compari-
son of the 100Ex setting on MEDTest 13 and MEDTest 14.
We provide results for average pooling on CNN descriptors
with late fusion of three layers as well, denoted as CNNavg.
Our proposed representation beats two other strong base-
lines in 15 out of 20 events in MEDTest 13 and 14 out of 20
events in MEDTest 14, respectively.

5.6. Comparison to the state-of-the-art Systems

We compare the MEDTest 134 results with the top per-
formers in the TRECVID MED 2013 competition [3, 30,
22]. The AXES team does not show their performance on
MEDTest 13 [3]. Natarajan et al. [30] report mAP 38.5%
on 100Ex, 17.9% on 10Ex from their whole visual system of
combining all their low-level visual features. Lan et al. [22]
report 39.3% mAP on 100Ex of their whole system includ-
ing non-visual features while they conducted 10Ex on their

4In [3, 30, 22], teams report performance on MEDEval 13 as well,
while MEDEval 13 is a different collection used in the competition, where
only NIST can evaluate the performance.
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Figure 5. MEDTest 14 100Ex per event performance comparison
(in mAP percentage). This figure is best viewed in color.

internal dataset. Our results achieve 44.6% mAP on 100Ex
and 29.8% mAP on 10Ex, which significantly outperforms
the top performers in the competition who combine more
than 10 kinds of features with sophisticated schemes. To
show that our representation is complementary to features
from other modalities, we perform average late fusion of our
proposed representation with IDT and MFCC, and generate
a lightweight system with static, motion and acoustic fea-
tures, which achieves 48.6% mAP on 100Ex, and 32.2%
mAP on 10Ex.

6. Conclusion

TRECVID Multimedia Event Detection (MED) has suf-
fered from huge computation costs in feature extraction and
classification processes. Using Convolutional Neural Net-
work (CNN) representation seems to be a good solution, but
generating video representation from CNN descriptors has
different characteristics from image representation. We are
the first to leverage encoding techniques to generate video
representation from CNN descriptors. And we propose la-
tent concept descriptors to generate CNN descriptors more
properly. For fast event search, we utilize Product Quantiza-
tion to compress the video representation and predict on the
compressed data. Extensive experiments on the two largest
event detection collections under different training condi-
tions demonstrate the advantages of our proposed represen-
tation. We have achieved promising performance which is
superior to the state-of-the-art systems which combine 10
more features. The proposed representation is extendible
and the performance can be further improved by better CNN
models and/or appropriate fine-tuning techniques.
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